Pandas tutorial shows how to do basic data analysis in Python with Pandas library. Pandas is a library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
last modified January 29, 2024
In this article we show how to do basic data analysis in Python with Pandas library. The code examples and the data are available at the author’s Github repository.
Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
The name of the library comes from the term “panel data”, which is an econometrics term for data sets that include observations over multiple time periods for the same individuals.
It offers data structures and operations for manipulating numerical tables and time series. The main two data types are: Series and DataFrame.
DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). It is a spreadsheet-like data structure. Series is a single column of the DataFrame. A DataFrame can be thought of as a dictionary of Series objects.
Pandas is installed with the following command:
$ pip install pandas
We use the pip3 command to install pandas module.
$ pip install numpy
Some examples also use numpy.
The following is a simple Pandas example.
simple.py
#!/usr/bin/python
import pandas as pd
data = [[‘Alex’, 10], [‘Ronald’, 18], [‘Jane’, 33]] df = pd.DataFrame(data, columns=[‘Name’, ‘Age’])
print(df)
In the program, we create a simple DataFrame and print it to the console.
import pandas as pd
We import the Pandas library.
data = [[‘Alex’, 10], [‘Ronald’, 18], [‘Jane’, 33]]
This is the data to be displayed in the frame. Each nested list is a row in the table. Note that there are many ways how to initialize a Pandas DataFrame.
df = pd.DataFrame(data, columns=[‘Name’, ‘Age’])
A DataFrame is created from the data. We give the frame column names with columns property.
$ python simple.py Name Age 0 Alex 10 1 Ronald 18 2 Jane 33
This is the output. The first column are row indexes.
We can update the index so that it does not start from 0.
change_index.py
#!/usr/bin/python
import pandas as pd
data = [[‘Alex’, 10], [‘Ronald’, 18], [‘Jane’, 33]] df = pd.DataFrame(data, columns=[‘Name’, ‘Age’]) df.index = df.index + 1
print(df)
In the example, we add 1 to the index.
$ python change_index.py Name Age 1 Alex 10 2 Ronald 18 3 Jane 33
The following example creates a series of a scalar value.
series_scalar.py
#!/usr/bin/python
import pandas as pd
s = pd.Series(5, index=[0, 1, 2, 3]) print(s)
We have a column containing fives.
$ python series_scalar.py 0 5 1 5 2 5 3 5 dtype: int64
The left column is the index.
We can create a series object from a numpy ndarray .
series_numpy.py
#!/usr/bin/python
import pandas as pd import numpy as np
data = np.array([‘a’, ‘b’, ‘c’, ’d’]) s = pd.Series(data)
print(s)
The example creates a column of letters from an ndarray.
$ python series_numpy.py 0 a 1 b 2 c 3 d dtype: object
A series can be created from a Python dictionary.
series_dict.py
#!/usr/bin/python
import pandas as pd import numpy as np
data = {‘coins’ : 22, ‘pens’ : 3, ‘books’ : 28} s = pd.Series(data)
print(s)
The example creates a series object from a dicionary of items.
$ python series_dict.py coins 22 pens 3 books 28 dtype: int64
The index consits of the names of the items.
The following example retrieves values form a series object.
series_retrieve.py
#!/usr/bin/python
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5], index=[‘a’, ‘b’, ‘c’, ’d’, ’e’])
print(s[0]) print(’———————–’)
print(s[1:4]) print(’———————–’)
print(s[[‘a’,‘c’,’d’]])
The example retrieves values from a series object.
print(s[0])
Here we get a single value.
print(s[1:4])
We retrieve rows by their indexes.
print(s[[‘a’,‘c’,’d’]])
Here we get the values by the index labels.
a 1 c 3 d 4 dtype: int64
The index column does not have to be numerical. We can create our own custom index.
custom_index.py
#!/usr/bin/python
import pandas as pd
data = {“country”: [“Brazil”, “Russia”, “India”, “China”, “South Africa”], “capital”: [“Brasilia”, “Moscow”, “New Dehli”, “Beijing”, “Pretoria”], “area”: [8.516, 17.10, 3.286, 9.597, 1.221], “population”: [200.4, 143.5, 1252, 1357, 52.98]}
frame = pd.DataFrame(data) print(frame)
print(’——————————’)
frame.index = [“BR”, “RU”, “IN”, “CH”, “SA”] print(frame)
In the example, we create a data frame from a data dictionary. We print the data frame and then we change the index column with index property.
country capital area population
BR Brazil Brasilia 8.516 200.40 RU Russia Moscow 17.100 143.50 IN India New Dehli 3.286 1252.00 CH China Beijing 9.597 1357.00 SA South Africa Pretoria 1.221 52.98
Pandas DataFrame has three basic parts: index, columns, and values.
index_vals_cols.py
#!/usr/bin/python
import pandas as pd
data = [[‘Alex’, 10], [‘Ronald’, 18], [‘Jane’, 33]] df = pd.DataFrame(data, columns=[‘Name’, ‘Age’])
print(f’Index: {df.index}’) print(f’Columns: {df.columns}’) print(f’Values: {df.values}’)
The example prints the index, columns, and values of a data frame.
$ python index_vals_cols.py Index: RangeIndex(start=0, stop=3, step=1) Columns: Index([‘Name’, ‘Age’], dtype=‘object’) Values: [[‘Alex’ 10] [‘Ronald’ 18] [‘Jane’ 33]]
The following example calculates the sum and the maximum of values in a data frame column. It uses also numpy library.
sum_max.py
#!/usr/bin/python
import pandas as pd import numpy as np
df = pd.DataFrame(np.arange(0, 1200, 2), columns=[‘A’])
print(sum(df[‘A’])) print(max(df[‘A’]))
The example calculates the maximum and the sum of values. It uses numpy’s arange fuction to generate an array of values.
print(sum(df[‘A’]))
When we compute the sum value, we refer to the column by its name.
$ sum_max.py 359400 1198
Pandas reads data from a CSV file with read_csv.
military_spending.csv
Pos, Country, Amount (Bn. $), GDP 1, United States, 610.0, 3.1 2, China, 228.0, 1.9 3, Saudi Arabia, 69.4, 10.0 4, Russia, 66.3, 4.3 5, India, 63.9, 2.5 6, France, 57.8, 2.3 7, United Kingdom, 47.2, 1.8 8, Japan, 45.4, 0.9 9, Germany, 44.3, 1.2 10, South Korea, 39.2, 2.6 11, Brazil, 29.3, 1.4 12, Italy Italy, 29.2, 1.5 13, Australia Australia, 27.5, 2.0 14, Canada Canada, 20.6, 1.3 15, Turkey Turkey, 18.2, 2.2
This is a simple CSV file containing data about military spending of countries.
Note: CSV files may have optional column names in the first row.
read_from_csv.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“military_spending.csv”)
print(df.to_string(index=False))
The example reads all data from the military_spending.csv file and prints it in tabular format to the console. It uses read_csv method.
print(df.to_string(index=False))
Since we have positions column, we hide the index from the output.
$ python read_from_csv.py Pos Country Amount (Bn. $) GDP 1 United States 610.0 3.1 2 China 228.0 1.9 3 Saudi Arabia 69.4 10.0 4 Russia 66.3 4.3 5 India 63.9 2.5 6 France 57.8 2.3 7 United Kingdom 47.2 1.8 8 Japan 45.4 0.9 9 Germany 44.3 1.2 10 South Korea 39.2 2.6 11 Brazil 29.3 1.4 12 Italy Italy 29.2 1.5 13 Australia Australia 27.5 2.0 14 Canada Canada 20.6 1.3 15 Turkey Turkey 18.2 2.2
A DataFrame is written to a CSV file with to_csv.
write_csv.py
#!/usr/bin/python
import pandas as pd
data = [[‘Alex’, 10], [‘Ronald’, 18], [‘Jane’, 33]] df = pd.DataFrame(data, columns=[‘Name’, ‘Age’])
df.to_csv(“users.csv”, index=False)
The example writes data to the users.csv file.
Random rows from the data frame can be selected with sample.
random_sample.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“military_spending.csv”)
print(df.sample(3))
In the example, we print three random rows from the data frame.
The to_dict transforms a data frame to a Python dictionary. The dictionary can be shown in different data outputs.
data_orient.py
#!/usr/bin/python
import pandas as pd
data = [[‘Alex’, 10], [‘Ronald’, 18], [‘Jane’, 33]] df = pd.DataFrame(data, columns=[‘Name’, ‘Age’])
print(’list’) print(df.to_dict(orient=‘list’))
print(’************************************’)
print(‘series’) print(df.to_dict(orient=‘series’))
print(’************************************’)
print(‘dict’) print(df.to_dict(orient=‘dict’))
print(’************************************’)
print(‘split’) print(df.to_dict(orient=‘split’))
print(’************************************’)
print(‘records’) print(df.to_dict(orient=‘records’))
print(’************************************’)
print(‘index’) print(df.to_dict(orient=‘index’))
The example prints a data frame to the console in six different formats.
The describe method generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.
describing.py
#!/usr/bin/python
import pandas as pd
s1 = pd.Series([1, 2, 3, 4, 5, 6, 7, 8]) s2 = pd.Series([12, 23, 31, 14, 11, 61, 17, 18])
data = {‘Vals 1’: s1, ‘Vals 2’: s2} df = pd.DataFrame(data)
print(df.describe())
The example prints descriptive statistics from a data frame.
$ python describe.py Vals 1 Vals 2 count 8.00000 8.000000 mean 4.50000 23.375000 std 2.44949 16.535136 min 1.00000 11.000000 25% 2.75000 13.500000 50% 4.50000 17.500000 75% 6.25000 25.000000 max 8.00000 61.000000
The next example counts values. You can find the employees.csv file in the Github repository.
counting.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“employees.csv”)
print(df.count())
print(f’Number of columns: {len(df.columns)}’)
print(df.shape)
The count method calculates the number of values for each column. The number of columns is retrieved with len(df.columns). The shape returns a tuple representing the dimensionality of the data frame.
$ python counting.py First Name 933 Gender 855 Start Date 1000 Last Login Time 1000 Salary 1000 Bonus % 1000 Senior Management 933 Team 957 dtype: int64 Number of columns: 8 (1000, 8)
Note that the columns have different number of values, because some values are missing.
With the head and tail methods, we can display the first and last n rows from the data frame.
head_tail.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“military_spending.csv”)
print(df.head(4))
print(’*******************************************’)
print(df.tail(4))
The example displays the first and last four rows from the data frame.
$ python head_tail.py Pos Country Amount (Bn. $) GDP 0 1 United States 610.0 3.1 1 2 China 228.0 1.9 2 3 Saudi Arabia 69.4 10.0 3 4 Russia 66.3 4.3
Pos Country Amount (Bn. $) GDP 11 12 Italy Italy 29.2 1.5 12 13 Australia Australia 27.5 2.0 13 14 Canada Canada 20.6 1.3 14 15 Turkey Turkey 18.2 2.2
We can hide the header and the index when we display the data frame.
no_header_index.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“military_spending.csv”)
print(df.head(4).to_string(header=False, index=False))
By setting the header and index attributes to False, we output the data frame without the header and index.
$ python no_header.py 1 United States 610.0 3.1 2 China 228.0 1.9 3 Saudi Arabia 69.4 10.0 4 Russia 66.3 4.3
This is the output. (The values 1 through 4 are from the pos column.)
The loc method allows to access a group of rows and columns by label(s) or a boolean array.
select_loc.py
#!/usr/bin/python
import pandas as pd
data = {‘Items’: [‘coins’, ‘pens’, ‘books’], ‘Quantity’: [22, 28, 3]}
df = pd.DataFrame(data, index=[‘A’, ‘B’, ‘C’])
print(df.loc[‘A’])
print(’——————————-’)
print(df.loc[[‘A’, ‘B’], [‘Items’]])
The example uses the loc function.
print(df.loc[‘A’])
Here we get the first row. We access the row by its index label.
print(df.loc[[‘A’, ‘B’], [‘Items’]])
Here we get the first two rows of the Items column.
Items
A coins B pens
The second example shows how to select by a boolean array.
select_loc2.py
#!/usr/bin/python
import pandas as pd
data = {‘Items’: [‘coins’, ‘pens’, ‘books’], ‘Quantity’: [22, 28, 3]}
df = pd.DataFrame(data, index=[‘A’, ‘B’, ‘C’])
print(df.loc[[True, False, True], [‘Items’, ‘Quantity’]])
The example selects rows by a boolean array.
$ select_loc2.py Items Quantity A coins 22 C books 3
In the third example, we apply a condition when selecting.
select_loc3.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“employees.csv”)
data = df.loc[(df[‘Salary’] > 10000) & (df[‘Salary’] < 50000)] print(data.head(5))
The example prints first five rows from the employees.csv file that match the criteria: the salary is between 10000 and 50000.
The iloc function allows for a integer-location based indexing for selection by position.
select_iloc.py
#!/usr/bin/python
import pandas as pd
df = pd.read_csv(“employees.csv”)
print(df.iloc[0:6]) # first six rows of dataframe print(’————————————–’)
print(df.iloc[:, 0:2]) # first two columns of data frame with all rows print(’————————————–’)
print(df.iloc[[0, 3, 6, 24], [0, 5, 7]]) print(’————————————–’)
print(df.iloc[:5, 5:8]) print(’————————————–’)
The example shows how to select various combinations of rows and columns with iloc.
The take function returns the elements in the given positional indices along an axis.
take_fun.py
#!/usr/bin/python
import pandas as pd import numpy as np
df = pd.read_csv(‘military_spending.csv’) df_c = df.take([1, 2, 3], axis=1)
print(df_c.to_string(index=False))
The example shows columns with indexes 1, 2, and 3.
$ ./take_fun.py Country Amount (Bn. $) GDP United States 610.0 3.1 China 228.0 1.9 Saudi Arabia 69.4 10.0 Russia 66.3 4.3 India 63.9 2.5 France 57.8 2.3 United Kingdom 47.2 1.8 Japan 45.4 0.9 Germany 44.3 1.2 South Korea 39.2 2.6 Brazil 29.3 1.4 Italy Italy 29.2 1.5 Australia Australia 27.5 2.0 Canada Canada 20.6 1.3 Turkey Turkey 18.2 2.2
The drop function removes the given columns or rows.
drop_fun.py
#!/usr/bin/python
import pandas as pd import numpy as np
df = pd.DataFrame(np.arange(16).reshape(4, 4), columns=[‘A’, ‘B’, ‘C’, ‘D’]) df.index = df.index + 1 print(df)
print(’—————————————-’)
df2 = df.drop([‘A’, ‘B’], axis=1) print(df2)
print(’—————————————-’)
df3 = df.drop([2, 3], axis=0) print(df3)
We build a small dataframe and delete two columns and two rows.
df2 = df.drop([‘A’, ‘B’], axis=1) print(df2)
We drop columns ‘A’ and ‘B’. The axis=1 tells that we drop columns.
df3 = df.drop([2, 3], axis=0)
We drop rows width indexes 2 and 3. To drop rows, we set the axis to 0.
C D
A B C D
1 0 1 2 3 4 12 13 14 15
The sort_values sorts a series in ascending or descending order.
sorting.py
#!/usr/bin/python
import pandas as pd
s1 = pd.Series([2, 1, 4, 5, 3, 8, 7, 6]) s2 = pd.Series([12, 23, 31, 14, 11, 61, 17, 18])
data = {‘Col 1’: s1, ‘Col 2’: s2} df = pd.DataFrame(data)
print(df.sort_values(‘Col 1’, ascending=True)) print(’————————————’) print(‘Sorted’)
print(df.sort_values(‘Col 2’, ascending=False))
The example sorts columns in in ascending or descending order.
Sorted Col 1 Col 2 5 8 61 2 4 31 1 1 23 7 6 18 6 7 17 3 5 14 0 2 12 4 3 11
In the next example, we sort by multiple columns.
sorting2.py
#!/usr/bin/python
import pandas as pd
s1 = pd.Series([1, 2, 1, 2, 2, 1, 2, 2]) s2 = pd.Series([‘A’, ‘A’, ‘B’, ‘A’, ‘C’, ‘C’, ‘C’, ‘B’])
data = {‘Col 1’: s1, ‘Col 2’: s2} df = pd.DataFrame(data)
print(df.sort_values([‘Col 1’, ‘Col 2’], ascending=[True, False]))
The example sorts by the first column containing the integers. Then the second column is sorted taken the results of the first sort into account.
$ python sorting2.py Col 1 Col 2 5 1 C 2 1 B 0 1 A 4 2 C 6 2 C 7 2 B 1 2 A 3 2 A
In this article we have worked with the Pandas library.
My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.
List all Python tutorials.