Python tutorial on Polars, covering how to sort data with practical examples.
last modified March 1, 2025
Polars is a fast and efficient DataFrame library in Python. Sorting data is a common operation in data analysis. This tutorial covers how to sort data in Polars with practical examples.
Sorting helps organize data for better analysis and visualization. Polars provides methods like sort and sort_by for sorting DataFrames.
This example shows how to sort a DataFrame by a single column.
basic_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, 30, 22, 35] }
df = pl.DataFrame(data) sorted_df = df.sort(‘Age’)
print(sorted_df)
The sort(‘Age’) sorts the DataFrame by the ‘Age’ column in ascending order. This is useful for organizing data by a specific attribute.
This example demonstrates sorting a DataFrame in descending order.
descending_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, 30, 22, 35] }
df = pl.DataFrame(data) sorted_df = df.sort(‘Age’, reverse=True)
print(sorted_df)
The sort(‘Age’, reverse=True) sorts the DataFrame by the ‘Age’ column in descending order. This is useful for ranking data.
This example shows how to sort a DataFrame by multiple columns.
multi_column_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, 30, 22, 25], ‘Salary’: [50000, 60000, 45000, 55000] }
df = pl.DataFrame(data) sorted_df = df.sort([‘Age’, ‘Salary’])
print(sorted_df)
The sort([‘Age’, ‘Salary’]) sorts the DataFrame first by ‘Age’ and then by ‘Salary’. This is useful for hierarchical sorting.
This example demonstrates sorting a DataFrame with null values.
null_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, None, 22, 35] }
df = pl.DataFrame(data) sorted_df = df.sort(‘Age’, nulls_last=True)
print(sorted_df)
The sort(‘Age’, nulls_last=True) sorts the DataFrame with null values placed at the end. This is useful for handling missing data.
This example shows how to sort a DataFrame using an expression.
expression_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, 30, 22, 35] }
df = pl.DataFrame(data) sorted_df = df.sort(pl.col(‘Age’) * -1)
print(sorted_df)
The sort(pl.col(‘Age’) * -1) sorts the DataFrame by ‘Age’ in descending order using an expression. This is useful for custom sorting logic.
This example demonstrates sorting a DataFrame with a custom order.
custom_order_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, 30, 22, 35] }
df = pl.DataFrame(data) sorted_df = df.sort(‘Name’, descending=[False, True])
print(sorted_df)
The sort(‘Name’, descending=[False, True]) sorts the DataFrame by ‘Name’ with a custom order. This is useful for specific sorting requirements.
This example shows how to sort a DataFrame by its index.
index_sort.py
import polars as pl
data = { ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’], ‘Age’: [25, 30, 22, 35] }
df = pl.DataFrame(data) sorted_df = df.sort(by=‘index’, reverse=True)
print(sorted_df)
The sort(by=‘index’, reverse=True) sorts the DataFrame by its index in descending order. This is useful for reordering rows.
Understand Data: Analyze data structure before sorting.
Choose Appropriate Columns: Select columns that align with your analysis goals.
Handle Null Values: Use nulls_last to manage missing data.
Validate Results: Check sorted data for accuracy and consistency.
In this article, we have explored how to sort data in Polars.
My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.
List all Polars tutorials.