PrettyTable tutorial shows how to use Python PrettyTable module to generate ASCII tables in Python.
last modified January 29, 2024
In this article we show how to use Python PrettyTable module to generate ASCII tables in Python. In this article we use the PTable module, which is a fork of the original PrettyTable library.
PrettyTable is a Python library for generating simple ASCII tables. It was inspired by the ASCII tables used in the PostgreSQL shell psql. We can control many aspects of a table, such as the width of the column padding, the alignment of text, or the table border. We can sort data.
We can also choose which columns and rows are going to be displayed in the final output. PrettyTable can read data from CSV, HTML, or database cursor and output data in ASCII or HTML.
$ pip install prettytable
We install the module with the pip tool.
A table can be created with add_row or add_column methods.
create_by_row.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
x.add_row([“Adelaide”, 1295, 1158259, 600.5]) x.add_row([“Brisbane”, 5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(x)
The example creates a PrettyTable with the add_row method.
from prettytable import PrettyTable
From the module, we import PrettyTable.
x.field_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
We set the header names.
x.add_row([“Adelaide”, 1295, 1158259, 600.5]) x.add_row([“Brisbane”, 5905, 1857594, 1146.4])
The rows are added to the table with add_row.
print(x)
In the end, we print the table to the console.
$ ./create_by_row.py +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Adelaide | 1295 | 1158259 | 600.5 | | Brisbane | 5905 | 1857594 | 1146.4 | | Darwin | 112 | 120900 | 1714.7 | | Hobart | 1357 | 205556 | 619.5 | | Sydney | 2058 | 4336374 | 1214.8 | | Melbourne | 1566 | 3806092 | 646.9 | | Perth | 5386 | 1554769 | 869.4 | +———–+——+————+—————–+
In the next example, we create the same table with the add_column method.
create_by_column.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable()
column_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
x.add_column(column_names[0], [“Adelaide”, “Brisbane”, “Darwin”, “Hobart”, “Sydney”, “Melbourne”, “Perth”]) x.add_column(column_names[1], [1295, 5905, 112, 1357, 2058, 1566, 5386 ]) x.add_column(column_names[2], [1158259, 1857594, 120900, 205556, 4336374, 3806092, 1554769]) x.add_column(column_names[3], [600.5, 1146.4, 1714.7, 619.5, 1214.8, 646.9, 869.4])
print(x)
The column name is the first parameter of the add_column method.
With del_row it is possible to delete a specific row. The method takes the index of the row to be deleted. Note that indexing start from zero.
delete_rows.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
x.add_row([“Adelaide”, 1295, 1158259, 600.5]) x.add_row([“Brisbane”, 5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
x.del_row(6) x.del_row(5) x.del_row(4) x.del_row(3)
print(x)
In the example, we delete last four rows.
$ ./delete_rows.py +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Adelaide | 1295 | 1158259 | 600.5 | | Brisbane | 5905 | 1857594 | 1146.4 | | Darwin | 112 | 120900 | 1714.7 | +———–+——+————+—————–+
The first three rows are left in the output.
The clear_rows method deletes all rows from the table but keeps the current column names. The clear method clears both rows and column names.
clear_rows.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
x.add_row([“Adelaide”, 1295, 1158259, 600.5]) x.add_row([“Brisbane”, 5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
x.clear_rows() print(x)
The example clears all rows from the table.
$ ./clear_rows.py +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ +———–+——+————+—————–+
This is the output of the example. The header of the table is not deleted.
The from_csv method can be used to generate a PrettyTable from CSV data.
data.csv
“City name”, “Area”, “Population”, “Annual Rainfall” “Adelaide”, 1295, 1158259, 600.5 “Brisbane”, 5905, 1857594, 1146.4 “Darwin”, 112, 120900, 1714.7 “Hobart”, 1357, 205556, 619.5 “Sydney”, 2058, 4336374, 1214.8 “Melbourne”, 1566, 3806092, 646.9 “Perth”, 5386, 1554769, 869.4
The data.csv contains data separated by comma character. Note that the first row consists of table column names.
read_from_csv.py
#!/usr/bin/python
from prettytable import from_csv
with open(“data.csv”, “r”) as fp: x = from_csv(fp)
print(x)
The example reads data from data.csv and generates a PrettyTable with from_csv from it.
The from_db_cursor method generates PrettyTable from a database cursor.
cities.sql
DROP TABLE IF EXISTS Cities;
CREATE TABLE Cities(Id INTEGER PRIMARY KEY, Name TEXT, Area INTEGER, Population INTEGER, Rainfall REAL);
INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Adelaide”, 1295, 1158259, 600.5); INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Brisbane”, 5905, 1857594, 1146.4); INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Darwin”, 112, 120900, 1714.7); INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Hobart”, 1357, 205556, 619.5); INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Sydney”, 2058, 4336374, 1214.8); INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Melbourne”, 1566, 3806092, 646.9); INSERT INTO Cities(Name, Area, Population, Rainfall) VALUES(“Perth”, 5386, 1554769, 869.4);
This is an SQL script to create a Cities table in the SQLite database.
$ sqlite3 data.db sqlite> .read cities.sql sqlite> SELECT * FROM Cities; Id Name Area Population Rainfall
1 Adelaide 1295 1158259 600.5 2 Brisbane 5905 1857594 1146.4 3 Darwin 112 120900 1714.7 4 Hobart 1357 205556 619.5 5 Sydney 2058 4336374 1214.8 6 Melbourne 1566 3806092 646.9 7 Perth 5386 1554769 869.4
We read the cities.sql script which generates the database table.
read_from_cursor.py
#!/usr/bin/python
import sqlite3 as lite from prettytable import from_db_cursor
con = lite.connect(‘data.db’)
with con:
cur = con.cursor()
cur.execute('SELECT * FROM Cities')
x = from_db_cursor(cur)
print(x)
In the code example, we connect to the data.db database and select all data from the Cities table. We generate a PrettyTable from the cursor using the from_db_cursor method.
The from_html generates a list of PrettyTables from a string of HTML code. Each <table> in the HTML becomes one PrettyTable object. The from_html_one generates a PrettyTable from a string of HTML code which contains only a single <table>.
data.html
<html> <body> <table> <tr> <th>City name</th> <th>Area</th> <th>Population</th> <th>Annual Rainfall</th> </tr> <tr> <td>Adelaide</td> <td>1295</td> <td>1158259</td> <td>600.5</td> </tr> <tr> <td>Brisbane</td> <td>5905</td> <td>1857594</td> <td>1146.4</td> </tr> <tr> <td>Darwin</td> <td>112</td> <td>120900</td> <td>1714.7</td> </tr> <tr> <td>Hobart</td> <td>1357</td> <td>205556</td> <td>619.5</td> </tr> <tr> <td>Sydney</td> <td>2058</td> <td>4336374</td> <td>1214.8</td> </tr> <tr> <td>Melbourne</td> <td>1566</td> <td>3806092</td> <td>646.9</td> </tr> <tr> <td>Perth</td> <td>5386</td> <td>1554769</td> <td>869.4</td> </tr> </table> </body> </html>
In the example, we use this HTML file.
read_from_html.py
#!/usr/bin/python
from prettytable import from_html_one
with open(“data.html”, “r”) as fp: html = fp.read()
x = from_html_one(html) print(x)
The example reads data from the data.html file and generates a PrettyTable with the from_html_one method.
With the sortby property, we specify which column is going to be sorted. The reversesort property controls the direction of sorting (ascending vs descending).
sorting.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable() x.field_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
x.add_row([“Adelaide”, 1295, 1158259, 600.5]) x.add_row([“Brisbane”, 5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(“Table sorted by population:”) x.sortby = “Population” print(x)
print()
print(“Table sorted by city in descendig order:”) x.sortby = “City name” x.reversesort = True print(x)
In the example, we sort data of the table.
print(“Table sorted by population:”) x.sortby = “Population”
First, we sort the data by population in ascending order.
x.sortby = “City name” x.reversesort = True
Then we sort data by city name in descendig order.
$ ./sorting.py Table sorted by population: +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Darwin | 112 | 120900 | 1714.7 | | Hobart | 1357 | 205556 | 619.5 | | Adelaide | 1295 | 1158259 | 600.5 | | Perth | 5386 | 1554769 | 869.4 | | Brisbane | 5905 | 1857594 | 1146.4 | | Melbourne | 1566 | 3806092 | 646.9 | | Sydney | 2058 | 4336374 | 1214.8 | +———–+——+————+—————–+
Table sorted by city in descendig order: +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Sydney | 2058 | 4336374 | 1214.8 | | Perth | 5386 | 1554769 | 869.4 | | Melbourne | 1566 | 3806092 | 646.9 | | Hobart | 1357 | 205556 | 619.5 | | Darwin | 112 | 120900 | 1714.7 | | Brisbane | 5905 | 1857594 | 1146.4 | | Adelaide | 1295 | 1158259 | 600.5 | +———–+——+————+—————–+
The align property controls alignment of fields. Its possible values are l, c, and r.
alignment.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable()
x.field_names = [“City name”, “Area”, “Population”, “Annual Rainfall”]
x.align[“City name”] = “l” x.align[“Area”] = “r” x.align[“Annual Rainfall”] = “r”
x.add_row([“Adelaide”, 1295, 1158259, 600.5]) x.add_row([“Brisbane”, 5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(x)
The code example aligns data in the table columns.
x.align[“City name”] = “l”
We align fields in the “City name” column to the left.
x.align[“Area”] = “r” x.align[“Annual Rainfall”] = “r”
We align fields in the “Area” and “Annual Rainfall” to the right.
$ ./alignment.py +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Adelaide | 1295 | 1158259 | 600.5 | | Brisbane | 5905 | 1857594 | 1146.4 | | Darwin | 112 | 120900 | 1714.7 | | Hobart | 1357 | 205556 | 619.5 | | Sydney | 2058 | 4336374 | 1214.8 | | Melbourne | 1566 | 3806092 | 646.9 | | Perth | 5386 | 1554769 | 869.4 | +———–+——+————+—————–+
The get_html_string generates HTML output from a PrettyTable.
html_output.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable([“City name”, “Area”, “Population”, “Annual Rainfall”])
x.add_row([“Adelaide”,1295, 1158259, 600.5]) x.add_row([“Brisbane”,5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(x.get_html_string())
The example prints the data in an HTML table to the console.
The get_string method returns the string representation of a table in current state. It has several options that control how the table is shown.
With the title parameter, we can include a table title in the output.
table_title.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable([“City name”, “Area”, “Population”, “Annual Rainfall”])
x.add_row([“Adelaide”,1295, 1158259, 600.5]) x.add_row([“Brisbane”,5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(x.get_string(title=“Australian cities”))
The example creates a PrettyTable with a title.
$ ./table_title.py +————————————————-+ | Australian cities | +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Adelaide | 1295 | 1158259 | 600.5 | | Brisbane | 5905 | 1857594 | 1146.4 | | Darwin | 112 | 120900 | 1714.7 | | Hobart | 1357 | 205556 | 619.5 | | Sydney | 2058 | 4336374 | 1214.8 | | Melbourne | 1566 | 3806092 | 646.9 | | Perth | 5386 | 1554769 | 869.4 | +———–+——+————+—————–+
With the fields option we can select columns which are going to be displayed.
select_columns.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable([“City name”, “Area”, “Population”, “Annual Rainfall”])
x.add_row([“Adelaide”,1295, 1158259, 600.5]) x.add_row([“Brisbane”,5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(x.get_string(fields=[“City name”, “Population”]))
In the example, we only display “City name” and “Population” columns.
$ ./select_columns.py +———–+————+ | City name | Population | +———–+————+ | Adelaide | 1158259 | | Brisbane | 1857594 | | Darwin | 120900 | | Hobart | 205556 | | Sydney | 4336374 | | Melbourne | 3806092 | | Perth | 1554769 | +———–+————+
With the start and end parameters, we can select which rows to display in the output.
select_rows.py
#!/usr/bin/python
from prettytable import PrettyTable
x = PrettyTable([“City name”, “Area”, “Population”, “Annual Rainfall”])
x.add_row([“Adelaide”,1295, 1158259, 600.5]) x.add_row([“Brisbane”,5905, 1857594, 1146.4]) x.add_row([“Darwin”, 112, 120900, 1714.7]) x.add_row([“Hobart”, 1357, 205556, 619.5]) x.add_row([“Sydney”, 2058, 4336374, 1214.8]) x.add_row([“Melbourne”, 1566, 3806092, 646.9]) x.add_row([“Perth”, 5386, 1554769, 869.4])
print(x.get_string(start=1, end=4))
In the example, we only include three rows in the output.
$ ./select_rows.py +———–+——+————+—————–+ | City name | Area | Population | Annual Rainfall | +———–+——+————+—————–+ | Brisbane | 5905 | 1857594 | 1146.4 | | Darwin | 112 | 120900 | 1714.7 | | Hobart | 1357 | 205556 | 619.5 | +———–+——+————+—————–+
In the next example, we display the BTC prices in a table. To fetch the data, we use the ccxt module. The data is fetched from the Binance exchange.
btc_ohlcv.py
#!/usr/bin/python
import asyncio from datetime import datetime import ccxt.async_support as ccxt from prettytable import PrettyTable
async def tickers():
binance = ccxt.binance()
data = await binance.fetch_ohlcv('BTC/USDT', '1d', limit=10)
await binance.close()
x = PrettyTable()
x.field_names = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
x.align['Volume'] = 'r'
for e in data:
d = datetime.utcfromtimestamp(e[0]/1000.0)
x.add_row([f'{d:%m/%d/%Y}', f'{e[1]:.2f}', f'{e[2]:.2f}',
f'{e[3]:.2f}', f'{e[4]:.2f}', f'{e[5]:.5f}'])
print(x)
asyncio.run(tickers())
The example displays the open, high, low, close data for BTC for the last ten days.
x = PrettyTable() x.field_names = [‘Date’, ‘Open’, ‘High’, ‘Low’, ‘Close’, ‘Volume’] x.align[‘Volume’] = ‘r’
We have the date and the OHLCV values. The last column is right-aligned.
$ ./btc_ohlcv.py +————+———-+———-+———-+———-+————–+ | Date | Open | High | Low | Close | Volume | +————+———-+———-+———-+———-+————–+ | 03/17/2023 | 24998.78 | 27756.84 | 24890.00 | 27395.13 | 624460.68091 | | 03/18/2023 | 27395.13 | 27724.85 | 26578.00 | 26907.49 | 371238.97174 | | 03/19/2023 | 26907.49 | 28390.10 | 26827.22 | 27972.87 | 372066.99054 | | 03/20/2023 | 27972.87 | 28472.00 | 27124.47 | 27717.01 | 477378.23373 | | 03/21/2023 | 27717.01 | 28438.55 | 27303.10 | 28105.47 | 420929.74220 | | 03/22/2023 | 28107.81 | 28868.05 | 26601.80 | 27250.97 | 224113.41296 | | 03/23/2023 | 27250.97 | 28750.00 | 27105.00 | 28295.41 | 128649.60818 | | 03/24/2023 | 28295.42 | 28374.30 | 27000.00 | 27454.47 | 86242.06544 | | 03/25/2023 | 27454.46 | 27787.33 | 27156.09 | 27462.95 | 50844.08102 | | 03/26/2023 | 27462.96 | 28194.40 | 27417.76 | 27740.46 | 42069.06686 | +————+———-+———-+———-+———-+————–+
Python prettytable Github page
In this article we have used the PrettyTable library to generate ASCII tables in Python.
My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.
List all Python tutorials.