Complete guide to Python's aiter function covering asynchronous iteration, custom async iterators, and practical examples.
Last modified April 11, 2025
This comprehensive guide explores Python’s aiter function, which returns an asynchronous iterator for asynchronous iteration. We’ll cover basic usage, custom async iterators, and practical examples.
The aiter function returns an asynchronous iterator object. It is the async equivalent of the built-in iter function. Introduced in Python 3.10, it works with objects implementing aiter.
Key characteristics: used in async for loops, requires an async iterable, returns an async iterator. It is typically used with anext for asynchronous iteration.
Here’s simple usage with an async generator showing how aiter works with basic async iteration.
basic_aiter.py
async def async_gen(): for i in range(3): yield i await asyncio.sleep(0.1)
async def main(): ag = async_gen() ait = aiter(ag)
while True:
try:
val = await anext(ait)
print(val)
except StopAsyncIteration:
break
asyncio.run(main())
This example shows basic async iteration. The async_gen produces values asynchronously. aiter gets the async iterator, and anext retrieves values.
The loop continues until StopAsyncIteration is raised, similar to regular iteration but with async/await syntax.
You can create custom async iterators by implementing aiter. This example shows a simple async counter.
custom_aiter.py
class AsyncCounter: def init(self, stop): self.stop = stop self.current = 0
def __aiter__(self):
return self
async def __anext__(self):
if self.current >= self.stop:
raise StopAsyncIteration
await asyncio.sleep(0.1)
self.current += 1
return self.current - 1
async def main(): async for i in AsyncCounter(3): print(i)
asyncio.run(main())
The AsyncCounter class implements aiter and anext to support async iteration. aiter would return this object when called.
This pattern is useful when you need more control over async iteration than async generators provide.
This example demonstrates the full async iterable protocol with separate iterator and iterable classes.
protocol.py
class AsyncIterable: def init(self, data): self.data = data
def __aiter__(self):
return AsyncIterator(self.data)
class AsyncIterator: def init(self, data): self.data = data self.index = 0
async def __anext__(self):
if self.index >= len(self.data):
raise StopAsyncIteration
await asyncio.sleep(0.1)
item = self.data[self.index]
self.index += 1
return item
async def main(): ait = aiter(AsyncIterable([1, 2, 3])) print(await anext(ait)) # 1 print(await anext(ait)) # 2 print(await anext(ait)) # 3
asyncio.run(main())
This shows the complete protocol with separate iterable and iterator classes. The AsyncIterable returns a new AsyncIterator.
This separation allows multiple independent iterations over the same data, similar to how regular iterables work.
The aiter function raises TypeError when used with non-async iterables. This example shows proper error handling.
errors.py
async def main(): try: ait = aiter([1, 2, 3]) # Regular list is not async iterable except TypeError as e: print(f"Error: {e}") # ’list’ object is not async iterable
class NoAiter:
pass
try:
ait = aiter(NoAiter())
except TypeError as e:
print(f"Error: {e}") # 'NoAiter' object is not async iterable
asyncio.run(main())
These examples demonstrate aiter’s behavior with invalid types. Regular iterables and objects without aiter raise errors.
To make a class work with aiter, implement aiter as shown in previous examples.
This example shows a practical use case for aiter with async data fetching from multiple sources.
data_fetch.py
async def fetch_data(url): # Simulate network request await asyncio.sleep(0.2) return f"Data from {url}"
class AsyncDataFetcher: def init(self, urls): self.urls = urls
def __aiter__(self):
self.index = 0
return self
async def __anext__(self):
if self.index >= len(self.urls):
raise StopAsyncIteration
url = self.urls[self.index]
self.index += 1
return await fetch_data(url)
async def main(): fetcher = AsyncDataFetcher([ “api.example.com/1”, “api.example.com/2”, “api.example.com/3” ])
async for data in fetcher:
print(data)
asyncio.run(main())
This demonstrates a real-world use case where aiter enables asynchronous data processing. The fetcher retrieves data from URLs one by one.
The async iteration pattern allows efficient I/O-bound operations without blocking the event loop.
Use for async iteration: Prefer aiter over manual async iteration
Implement aiter: For custom async iterable types
Separate iterable/iterator: For multiple independent iterations
Handle errors: Catch TypeError when input type is uncertain
Use async generators: For simple cases when possible
My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.
List all Python tutorials.