Python decorators tutorial shows how to use decorators in Python. Decorators extend and modify the behavior of a callable without permanently modifying the callable itself.
last modified March 21, 2024
In this article we show how to use decorator functions in Python.
Python functions are first-class citizens. This means that functions have equal status with other objects in Python. Functions can be assigned to variables, stored in collections, created and deleted dynamically, or passed as arguments.
A nested function, also called an inner function, is a function defined inside another function.
Python decorator extends and modifies the behavior of a callable without modifying the callable itself. Decorators are functions which decorate (or wrap) other functions and execute code before and after the wrapped function runs.
Python decorators are often used in logging, authentication and authorization, timing, and caching.
In the next example, we create a simple decorator example.
main.py
#!/usr/bin/python
def enclose(fun):
def wrapper():
print("***************************")
fun()
print("***************************")
return wrapper
def myfun(): print(“myfun”)
enc = enclose(myfun) enc()
The enclose function is a decorator which extends the decorated function by adding star symbols to its output.
def enclose(fun): …
The enclose function takes a function as a parameter.
def wrapper():
print("***************************")
fun()
print("***************************")
return wrapper
The wrapper decorates the passed function with stars. The wrapper function is returned.
def myfun(): print(“myfun”)
This is a regular function to be decorated.
enc = enclose(myfun) enc()
The myfun is passed to the enclose function, in which it is extended. The wrapper function is returned and called.
$ python main.py
myfun
This is the output. The decorator adds the stars before and after the output of the regular function.
Python allows to use the @ symbol to mark the method to be decorated with a decorator.
main.py
#!/usr/bin/python
def enclose(fun):
def wrapper():
print("***************************")
fun()
print("***************************")
return wrapper
@enclose def myfun(): print(“myfun”)
myfun()
Functionally, the example is equivalent to the previous one. Only different syntax is used.
The following examples show how to decorate functions which take parameters.
main.py
#!/usr/bin/python
def enclose(fun):
def wrapper(val):
print("***************************")
fun(val)
print("***************************")
return wrapper
@enclose def myfun(val): print(f"myfun with {val}")
myfun(‘falcon’)
In this code example, the regular function takes one argument.
main.py
#!/usr/bin/python
def enclose(fun):
def wrapper(*args, **kwargs):
print("***************************")
fun(*args, **kwargs)
print("***************************")
return wrapper
@enclose def myfun(name, age): print(f’{name} is {age} years old')
myfun(name=‘Peter’, age=32) myfun(‘Roman’, 29)
This example shows how to deal with variable number of parameters using the *args, **kwargs syntax.
The decorator function can modify the data of the decorated function.
main.py
#!/usr/bin/python
def uppercase(fun):
def wrapper():
res = fun()
modified = res.upper()
return modified
return wrapper
@uppercase def gen_message(): return ‘Hello there!’
msg = gen_message() print(msg)
The @uppercase decorator changes the returned text to uppercase.
def uppercase(fun):
def wrapper():
res = fun()
modified = res.upper()
return modified
return wrapper
Inside the wrapper function the text is modified and returned.
$ python main.py HELLO THERE!
It is possible to apply multiple decorators on a function.
main.py
#!/usr/bin/python
def strong(fun):
def wrapper():
return f'<strong>{fun()}</strong>'
return wrapper
def em(fun):
def wrapper():
return f'<em>{fun()}</em>'
return wrapper
@strong @em def message(): return ‘This is some message’
print(message())
In the example, we apply two HTML tags on a text.
$ python main.py <strong><em>This is some message</em></strong>
In the following example, we apply a timer decorator on a function.
main.py
#!/usr/bin/python
import time import math import sys
sys.set_int_max_str_digits(maxdigits=90000)
def timer(func):
def wrapper(*args, **kwargs):
begin = time.time()
f = func(*args, **kwargs)
end = time.time()
print("Total time taken in : ", func.__name__, end - begin)
return f
return wrapper
@timer def factorial(num):
return math.factorial(num)
f = factorial(4580) print(f)
The example calculates how long the factorial function runs using a decorator.
begin = time.time()
Before the function is run, we get the start time.
end = time.time() print(“Total time taken in : “, func.name, end - begin)
After the function is run, we get the end time and print the difference.
After applying the decorator function, the name, doc, and module attributes of the original function are lost. This makes debugging awkward. To fix this, we can use the functool’s @wraps decorator.
main.py
#!/usr/bin/python
from functools import wraps
def enclose(fun):
@wraps(fun)
def wrapper():
'''This is wrapper function'''
print("***************************")
fun()
print("***************************")
return wrapper
@enclose def myfun(): ‘‘’this is myfun()’’’ print(“myfun”)
myfun()
print(myfun.name) print(myfun.doc)
In the example, we apply the @wraps decorator on the wrapper function. The name and the docstring of the original function (myfun) are kept.
$ python main.py
myfun
myfun this is myfun()
It is possible to use classes as decorators. For this, we need to implement the call magic function.
main.py
#!/usr/bin/python
import functools
class CountCalls:
def __init__(self, fun):
functools.update_wrapper(self, fun)
self.fun = fun
self.num_of_calls = 0
def __call__(self, *args, **kwargs):
self.num_of_calls += 1
print(f"Call {self.num_of_calls} of {self.fun.__name__} fun")
return self.fun(*args, **kwargs)
@CountCalls def hello(): print(“Hello there!”)
hello() hello() hello()
In the example, we use a class decorator to count the calls of a regular function.
def init(self, fun):
functools.update_wrapper(self, fun)
self.fun = fun
self.num_of_calls = 0
We call the update_wrapper function. It has the same purpose as the @wraps decorator; i.e. it keeps the metadata of the original function (name or doc). We keep the reference to the original function and set the num_of_calls variable.
def call(self, *args, **kwargs):
self.num_of_calls += 1
print(f"Call {self.num_of_calls} of {self.fun.__name__} fun")
return self.fun(*args, **kwargs)
We increase the num_of_calls variable, print a message, and call the original function, passing it possible arguments.
$ python main.py Call 1 of hello fun Hello there! Call 2 of hello fun Hello there! Call 3 of hello fun Hello there!
Python has the @staticmethod built-in decorator, which creates a static method in Python class. A static method belongs to a class and is called without creating an instance.
main.py
#!/usr/bin/python
class Math:
@staticmethod
def abs(x):
if x < 0:
return -x
return x
print(Math.abs(3)) print(Math.abs(-3))
In the example, we create a static abs method using the @staticmethod decorator. The method is called by specifying the class name and using the dot operator: Math.abs.
Popular Python framework Flask uses decorators. For instance, the @app.route is used to define routes.
main.py
#!/usr/bin/python
from flask import Flask
app = Flask(name)
@app.route(’/’) def hello(): return ‘Hello there!’
In the example, the hello function is mapped to the root page using Flask’s @app.route decorator.
In this article we have worked with Python decorators.
My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.
List all Python tutorials.