Python namedtuple tutorial shows how to work with namedtuples in Python. The Python namedtuple is an immutable container type, whose values can be accessed with indexes and named attributes.
last modified January 29, 2024
Python namedtuple tutorial shows how to work with namedtuples in Python.
Python namedtuple is an immutable container type, whose values can be accessed with indexes and named attributes. It has functionality like tuples with additional features. A named tuple is created with the collections.namedtuple factory function.
Named tuples are essentially easy-to-create, immutable, lightweight object types. Named tuples can be used to make the code more clean and Pythonic. They are similar to records in other languages (C#, Java).
The following is a simple example with a namedtuple.
basic.py
#!/usr/bin/python
from collections import namedtuple
City = namedtuple(‘City’ , ’name population’)
c1 = City(‘Bratislava’, 432000) c2 = City(‘Budapest’, 1759000)
print(c1) print(c2)
The example create city namedtuples.
from collections import namedtuple
First, we import the namedtuple type from the collections module.
City = namedtuple(‘City’ , ’name population’)
We define the namedtuple. The first argument is the name for the namedtuple. The second argument are the field names. These can be specified in a string ’name population’ or in a list [’name’, ‘population’].
c1 = City(‘Bratislava’, 432000) c2 = City(‘Budapest’, 1759000)
Here we create two namedtuple objects.
$ ./basic.py City(name=‘Bratislava’, population=432000) City(name=‘Budapest’, population=1759000)
The namedtuples can be accessed using indexing and their named attributes.
accessing.py
#!/usr/bin/python
from collections import namedtuple
City = namedtuple(‘City’ , ’name population’)
c1 = City(‘Bratislava’, 432000) c2 = City(‘Budapest’, 1759000)
print(c1[0]) print(c1[1])
print(c2.name) print(c2.population)
In the example, we demonstrate both ways.
$ ./accessing.py Bratislava 432000 Budapest 1759000
The unpacking is storing iterable elements into variables or function arguments.
unpacking.py
#!/usr/bin/python
from collections import namedtuple
City = namedtuple(‘City’ , ’name population’)
c1 = City(‘Bratislava’, 432000) c2 = City(‘Budapest’, 1759000)
name, population = c1 print(f’{name}: {population}’)
print(’———————-’)
print(c2) print(*c2, sep=’: ‘)
In the example, we unpack our namedtuples.
name, population = c1
Here we unpack the c1 namedtuple into two variables.
print(*c2, sep=’: ‘)
Here we unpack the c2 namedtuple with the * operator into print function arguments, which are joined with the given separator into the final output.
City(name=‘Budapest’, population=1759000) Budapest: 1759000
unpacking2.py
#!/usr/bin/python
from collections import namedtuple
City = namedtuple('City' , 'name population')
d = { 'name': 'Bratislava', 'population': 432000}
c = City(**d)
print(c)
With the ** operator, we can unpack a dictionary into arguments of a namedtuple.
Since namedtuples are built on top of regular classes, we can
add functionality to them.
subclassing.py
#!/usr/bin/python
from collections import namedtuple from math import sqrt
class Point(namedtuple(‘Point’, ‘x y’)):
__slots__ = ()
@property
def hypot(self):
return sqrt((self.x ** 2 + self.y ** 2))
def __str__(self):
return f'Point: x={self.x} y={self.y} hypot={self.hypot}'
p = Point(5, 5) print(p.hypot) print(p)
We have a Point namedtuple. We add the hypot property to it.
$ ./subclassing.py 7.0710678118654755 Point: x=5 y=5 hypot=7.0710678118654755
Since Python 3.6, we can use the typing.NamedTuple to create a namedtuple.
named_tuple.py
#!/usr/bin/python
from typing import NamedTuple
class City(NamedTuple): name: str population: int
c1 = City(‘Bratislava’, 432000) c2 = City(‘Budapest’, 1759000)
print(c1) print(c2)
In the example, we have a City class that inherits from the typing.NamedTuple. The attributes have typehints.
The defaults parameter can be used to provide default values to fields.
defaults.py
#!/usr/bin/python
from collections import namedtuple from math import sqrt
class Point(namedtuple(‘Point’, ‘x y’, defaults=[1, 1])):
__slots__ = ()
@property
def hypot(self):
return sqrt((self.x ** 2 + self.y ** 2))
def __str__(self):
return f'Point: x={self.x} y={self.y} hypot={self.hypot}'
p1 = Point(5, 5) print(p1)
p2 = Point() print(p2)
The default value for x and y is 1.
$ ./defaults.py Point: x=5 y=5 hypot=7.0710678118654755 Point: x=1 y=1 hypot=1.4142135623730951
Python provides several helper methods for a namedtuple.
helpers.py
#!/usr/bin/python
from typing import NamedTuple
class Point(NamedTuple):
x: int = 1
y: int = 1
p = Point(5, 5)
print(p._fields) print(p._field_defaults) print(p._asdict())
The _fields is a tuple of strings listing the field names. The _field_defaults is a dictionary mapping field names to default values. The _asdict method returns a new ordered dictionary, which maps field names to their corresponding values.
$ ./helpers.py (‘x’, ‘y’) {‘x’: 1, ‘y’: 1} OrderedDict([(‘x’, 5), (‘y’, 5)])
The _asdict method can be used to serialize namedtuples into JSON format.
json_output.py
#!/usr/bin/python
from typing import NamedTuple import json
class City(NamedTuple): name: str population: int
c1 = City(‘Bratislava’, 432000) c2 = City(‘Budapest’, 1759000) c3 = City(‘Prague’, 1280000) c4 = City(‘Warsaw’, 1748000)
cities = [c1, c2, c3, c4]
print(json.dumps(c1._asdict()))
json_string = json.dumps([city._asdict() for city in cities]) print(json_string)
With the help of the json.dumps method, we serialize a single city and a list of cities.
$ ./json_output.py {“name”: “Bratislava”, “population”: 432000} [{“name”: “Bratislava”, “population”: 432000}, {“name”: “Budapest”, “population”: 1759000}, {“name”: “Prague”, “population”: 1280000}, {“name”: “Warsaw”, “population”: 1748000}]
In the following example, we sort a list of namedtuples.
sorting.py
#!/usr/bin/python
from typing import NamedTuple
class City(NamedTuple): id: int name: str population: int
c1 = City(1, ‘Bratislava’, 432000) c2 = City(2, ‘Budapest’, 1759000) c3 = City(3, ‘Prague’, 1280000) c4 = City(4, ‘Warsaw’, 1748000) c5 = City(5, ‘Los Angeles’, 3971000) c6 = City(6, ‘Edinburgh’, 464000) c7 = City(7, ‘Berlin’, 3671000)
cities = [c1, c2, c3, c4, c5, c6, c7]
cities.sort(key=lambda e: e.name)
for city in cities: print(city)
With the help of the sort method and the lambda function, we sort cities by their name.
$ ./sorting.py City(id=7, name=‘Berlin’, population=3671000) City(id=1, name=‘Bratislava’, population=432000) City(id=2, name=‘Budapest’, population=1759000) City(id=6, name=‘Edinburgh’, population=464000) City(id=5, name=‘Los Angeles’, population=3971000) City(id=3, name=‘Prague’, population=1280000) City(id=4, name=‘Warsaw’, population=1748000)
The cities are sorted by their names in ascending order.
The _make is method that makes a new instance of a namedtuple from an existing sequence or iterable.
making.py
#!/usr/bin/python
from collections import namedtuple
City = namedtuple(‘City’ , ’name population’)
c1 = City._make((‘Bratislava’, 432000)) c2 = City._make((‘Budapest’, 1759000))
print(c1) print(c2)
The example creates City namedtuples from tuples with the help of the _make method.
Python namedtuples are helpful when we read CSV data.
cities.csv
Bratislava, 432000 Budapest, 1759000 Prague, 1280000 Warsaw, 1748000 Los Angeles, 3971000 New York, 8550000 Edinburgh, 464000 Berlin, 3671000
We have this CSV file.
read_csv.py
#!/usr/bin/python
from collections import namedtuple import csv
City = namedtuple(‘City’ , ’name population’)
f = open(‘cities.csv’, ‘r’)
with f:
reader = csv.reader(f)
for city in map(City._make, reader):
print(city)
We use the map and the _make functions to create clean code.
$ ./read_csv.py City(name=‘Bratislava’, population=’ 432000’) City(name=‘Budapest’, population=’ 1759000’) City(name=‘Prague’, population=’ 1280000’) City(name=‘Warsaw’, population=’ 1748000’) City(name=‘Los Angeles’, population=’ 3971000’) City(name=‘New York’, population=’ 8550000’) City(name=‘Edinburgh’, population=’ 464000’) City(name=‘Berlin’, population=’ 3671000’)
In the following example, we use a namedtuple to read data from SQLite database.
cities.sql
DROP TABLE IF EXISTS cities; CREATE TABLE cities(id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT, population INTEGER);
INSERT INTO cities(name, population) VALUES(‘Bratislava’, 432000); INSERT INTO cities(name, population) VALUES(‘Budapest’, 1759000); INSERT INTO cities(name, population) VALUES(‘Prague’, 1280000); INSERT INTO cities(name, population) VALUES(‘Warsaw’, 1748000); INSERT INTO cities(name, population) VALUES(‘Los Angeles’, 3971000); INSERT INTO cities(name, population) VALUES(‘New York’, 8550000); INSERT INTO cities(name, population) VALUES(‘Edinburgh’, 464000); INSERT INTO cities(name, population) VALUES(‘Berlin’, 3671000);
These are SQL statements to create the cities table.
$ sqlite3 ydb.db SQLite version 3.31.1 2020-01-27 19:55:54 Enter “.help” for usage hints. sqlite> .read cities.sql
With the sqlite3 command line tool, we generate the SQLite database and the cities table.
read_sql.py
#!/usr/bin/python
from typing import NamedTuple import sqlite3 as sqlite
class City(NamedTuple):
id: int
name: str
population: int
con = sqlite.connect(‘ydb.db’)
with con:
cur = con.cursor()
cur.execute('SELECT * FROM cities')
for city in map(City._make, cur.fetchall()):
print(city)
We read all data from the cities table and transform each table row into a City namedtuple.
Python collections - language reference
In this article we have worked with Python namedtuple.
My name is Jan Bodnar, and I am a passionate programmer with extensive programming experience. I have been writing programming articles since 2007. To date, I have authored over 1,400 articles and 8 e-books. I possess more than ten years of experience in teaching programming.
List all Python tutorials.